Современное состояние развития теории и технологии формирования элементарных математических представлений дошкольников

NovaInfo 47, с.236-240, скачать PDF
Опубликовано
Раздел: Педагогические науки
Просмотров за месяц: 15
CC BY-NC

Аннотация

В статье описана история развития формирования математических представлений дошкольников через анализ работ учёных разных стран в контексте методов, содержания, приемов обучения.

Ключевые слова

РАЗВИТИЕ НАУКИ, ДОШКОЛЬНИК, МАТЕМАТИКА

Текст научной работы

Педагог дошкольного образования должен быть знаком с современным состоянием развития теории и технологии развития математических представлений дошкольников с целью дать качественное математическое образование своим воспитанникам. При этом необходимо помнить, что темпы развития общества не обеспечивают профессиональной подготовки на весь трудоспособный период жизни человека. Поэтому воспитатель должен быть готов к непрерывному образованию в течение всей жизни, повышению квалификации, приобретению и развитию навыков сочетания, переноса, взаимосвязи уже усвоенных знаний с новыми [3, 4].

Современная ситуация теоретического и технологического развития формирования математических представлений у детей дошкольного возраста была сформирована в 80-90-е гг. XX вв. В 80-е гг. ученые стали искать пути улучшение дошкольного математического образования через оптимизацию содержания и новые методы обучения детей [5, 7].

Формирование начальных математических представлений было заложено психологами. Гальперин П.Я. разработал линию по ознакомлению с элементарными математическими понятиями и действиями. Она была построена на введении мерки. Число при таком подходе понимается как отношение измеряемой величины к избранной мерке, как результат измерения. Формирование понятия числа через освоение детьми действий комплектования, уравнивания, измерения и психологический механизм счета как умственной деятельности, были описаны в трудах Давыдова В.В. В своих работах Березина Р.Л., Лебедева 3.Е., Проскура Е.В., Непомнящая Р.Л., Левинова Л.А., Щербакова Е.И., Тарунтаева Т.В. показали, что возможно развить у детей дошкольного возраста представления о величине и о взаимосвязи между счетом и измерением [5].

Таким образом, согласно традиционной методике обучения число является результатом счета. Особенностью нового способа введения понятия явилось представление числа как отношения измеряемой величины к единице измерения (условной мерке), т.е. число, как результат измерения. Поэтому в программу обучения детей внедрили новый раздел «Величина» [2, 8].

Анализ содержания обучения дошкольников с точки зрения новых задач дал возможность исследователям разработать методику обучения детей обобщенным способам решения познавательных задач, построению связей, зависимостей и т.д. Для этого стали предлагаться новые средства обучения: модели, схематические рисунки, которые отражали существенное в познаваемом содержании [1, 6].

Маркушевич А.И., Папи Ж. и др. обратили внимание на необходимость пересмотра содержания знаний по математике для детей шести лет. Они считали, что следует обогатить, добавить новые представления, относящиеся к комбинаторике, множествам, вероятности, графам и т.д. Маркушевич А.И. рекомендовал строить методику по обучению математике, опираясь на положения теории множеств. Считал, что необходимо обучать дошкольников при помощи простых операций с множествами, развивать у них пространственные и количественные представления. Папи Ж. разработал методику по формированию представлений у детей о функциях, отношениях, отображениях, порядке и др. при помощи использования многоцветных графов [1].

Попытки формирования количественных представлений у детей раннего возраста, а так же пути совершенствования этих навыков у детей дошкольного возраста были рассмотрены Ермолаевой Л.И., Даниловой В.В., Тархановой Е.А. [2, 9].

Приемы, содержание по освоению пространственно-временных отношений у детей дошкольного возраста были исследованы Назаренко К.В., Рихтерман Т.Д. и др. [8].

Методы, приемы математического развития дошкольников при помощи игры сформулированы Игнатовой Т.Н., Смоленцевой А.А., Щербининой И.И. и др. [7].

Метлиной Л.С. разработаны: комплексный подход к обучению, эффективные дидактические средства, разнообразные приемы обучения. Ее работы стали использовать при написании конспектов занятий по формированию элементарных математических представлений, методических рекомендаций [9].

Разработка новых методик по обучению детей дошкольного возраста математике осуществлялась и в других странах, таких как Германия, Польша, США, Франции [6, 8].

Ученые из Польши и Германии, Дум Э., Альтхауз Д., Фидлер М., обратили внимание на развитие представлений о числах в процессе практических действий с множествами предметов. Учёными были предложены игры и упражнения, которые помогали детям овладеть умениями упорядочивать, классифицировать предметы по разным признакам, в том числе и по количеству [2, 7].

Ученые из США Лаксон В. и Грин Р. в качестве развития представлений о понятии числа и математических действиях изучали понимание детьми количественных отношений на конкретных множествах предметов. Ими уделялось большое внимание изучению вопроса понимания детьми принципа сохранения количества в процессе практических действий в преобразовании непрерывных и дискретных величин [1].

Французские учёные считали, что дети до четырёх лет должны учиться считать самостоятельно без помощи взрослого потому, что играя с песком, водой и другими предметами у детей формируется представление о количестве, величине на сенсорном уровне [8].

Педагог французских материнских школ Полина Кергомар считала, что способность к пониманию математики зависит от качества обучения. Педагогами из Франции была разработана система логических игр. Считалось, что в игре у детей формируется и развивается способность к пониманию, рассуждению, самоконтролю. Дети учатся переносить усвоенные навыки в новые ситуации. Используя математический язык, дети 5-6 лет постигают элементарные математические понятия, учатся кратко и точно выражать свои мысли, находить и исправлять ошибки [2, 8].

В 90-х гг. XX в. было выделено несколько основных научных направлений в методике и теории развития математических представлений у детей дошкольного возраста. В первом направлении Пиаже Ж., Поддьяков Н.Н. и др., рассматривали содержание развития и обучения, приемы и методы по формированию у дошкольников интеллектуально-творческих способностей, таких как: наблюдательность, умение сравнивать, обобщать и т.д. Вторым направлением, которое рассматривали Шпрангер Э., Эльконин Д.Б. и др., является развитие у детей сенсорных способностей, процессов, например, при использовании моделирования. Моделирование – это одно из интеллектуальных умений детей дошкольного возраста. Дошкольники способны оперировать несколькими видами моделей: конкретными, условно-символическими, обобщенными. Георгиев Л.С., Давыдов В.В. и др. выделили третье направление. Его суть заключается в том, что до освоения чисел, происходит практическое сравнение величин. Данное сравнение осуществляется через выявление в предметах общих признаков, а именно: длина, масса, ширина, высота. Столяр А.А., Соболевский Р.Ф. и др. разработали четвертое теоретическое направление. Оно опирается на становление и развитие одного вида мышления в процессе понимания и усвоения детьми свойств и отношений. В процессе действий с разными множествами, цветом, предметов, формой, размером и т.д., дети учатся выполнять логические задачи над свойствами разных подмножеств [2, 5].

Таким образом, теоретические основы современной методики по формированию и развитию математических представлений у детей дошкольного возраста основываются на четырех направлениях, новых и традиционных идеях.

Читайте также

Список литературы

  1. Белошистая А. В. Развитие математических способностей дошкольников. - М.: Просвещение, 2004.
  2. Будько Т.С. Развитие математических представлений у дошкольников. - М.: Просвещение, 2008.
  3. Киричек К.А. О некоторых активных формах проведения занятий у бакалавров профиля «Дошкольное образование» // Проблемы и перспективы развития образования в России: сборник материалов XXXIX Всероссийской научно-практической конференции / Под общ. ред. С.С. Чернова. – Новосибирск: Издательство ЦРНС, 2016. – С.66-71.
  4. Киричек К.А. Подготовка бакалавров профиля «Дошкольное образование» к осуществлению математического развития детей в образовательных организациях // Kant. – 2016. - №1(18). - с.37-40.
  5. Михайлова 3.А., Непомнящая Р.Л., Полякова М.Н. Теории и технологии математического развития детей дошкольного возраста. - М.: Центр педагогического образования, 2008.
  6. Смолякова О.К., Смолякова Н.В. Математика для дошкольников. В помощь родителям при подготовке детей 3-6 лет к школе. - М.: Издат-школа, 2002.
  7. Столяр А.А. Формирование элементарных математических представлений у дошкольников. - М.: Просвещение, 2007.
  8. Тарунтаева Т.В. Развитие элементарных математических представлений дошкольников. - М.: Просвещение, 2002.
  9. Федлер М. Математика уже в детском саду. - М.: Просвещение, 2003.

Цитировать

Ткачёва, Н.А. Современное состояние развития теории и технологии формирования элементарных математических представлений дошкольников / Н.А. Ткачёва. — Текст : электронный // NovaInfo, 2016. — № 47. — С. 236-240. — URL: https://novainfo.ru/article/6787 (дата обращения: 21.05.2022).

Поделиться