Актуальность разработки курса лекций по дисциплине «Механика». Раздел «Теория механизмов и машин» и «Сопротивление материалов»

№81-1,

педагогические науки

Два раздела дисциплины Механика - Теория механизмов и машин и Сопротивление материалов являются основополагающими для последующего изучения раздела Детали машин. Доступность изучаемых в ходе данных разделов учебных вопросов способствует формированию соответствующих компетенций у обучающихся. В работе описаны основные понятия, которые следует учитывать при разработке соответствующих курсов лекций.

Похожие материалы

Курсы лекций по дисциплине «Механика» разрабатываются с целью оказания методической помощи обучающимся в изучении дисциплины с учетом требований Государственного образовательного стандарта высшего образования и выполняет основные функции:

  • информационно-методическую, которая позволяет получить представление о целях, содержании, общей стратегии обучения, воспитания и развития обучающихся средствами учебной дисциплины «Механика»;
  • организационно-планирующую, которая предусматривает изучение дисциплины «Механика», структурирование учебного материала, определение его количественных и качественных характеристик;
  • методическую, которая позволяет преподавателю механики реализовать собственный подход в части тематического планирования курса и структурирования учебного материала, определения последовательности и путей его изучения.

Учебная дисциплина «Механика» в системе высшего образования занимает одно из приоритетных мест, обеспечивает надлежащий уровень подготовленности человека в области безопасности жизнедеятельности в техносфере, безопасности технологических процессов и производств, защиты в чрезвычайных ситуациях, пожарной безопасности.

Учебная дисциплина «Механика» реализует единый подход для теоретической и практической подготовки будущих специалистов к применению знаний при решении вопросов безопасности жизнедеятельности в техносфере, безопасности технологических процессов и производств, защиты в чрезвычайных ситуациях, пожарной безопасности.

Как самостоятельная научная дисциплина ТММ, подобно другим прикладным разделам науки, возникла в результате промышленной революции начало которой относится к 30-м годам XVIII века. Однако машины существовали за долго до этой даты. Поэтому в истории развития ТММ можно условно выделить четыре периода:

1-й период до начала XIX века — период эмпирического машиностроения в течение которого изобретается большое количество простых машин и механизмов: подъемники, мельницы, камнедробилки, ткацкие и токарные станки, паровые машины (Леонардо да Винчи, Вейст, Ползунов, Уатт). Одновременно закладываются и основы теории: теорема о изменении кинетической энергии и механической работы, "золотое правило механики", законы трения, понятие о передаточном отношении, основы геометрической теории циклоидального и эвольвентного зацепления ( Карно, Кулон, Амонтон, Кадано Дж., Ремер, Эйлер).

2-й период от начала до середины XIX века — период начала развития ТММ. В это время разрабатываются такие разделы как кинематическая геометрия механизмов (Савари, Шаль, Оливье), кинетостатика (Кариолис), расчет маховика (Понселе), классификация механизмов по функции преобразования движения (Монж, Лану) и другие разделы. Пишутся первые научные монографии по механике машин (Виллис, Бориньи), читаются первые курсы лекций по ТММ и издаются первые учебники (Бетанкур, Чижов, Вейсбах).

3-й период от второй половины XIX века до начала XX века — период фундаментального развития ТММ. За этот период разработаны: основы структурной теории (Чебышев, Грюблер, Сомов, Малышев), основы теории регулирования машин (Вышнеградский), основы теории гидродинамической смазки (Грюблер), основы аналитической теории зацепления (Оливье, Гохман), основы графоаналитической динамики (Виттенбауэр, Мерцалов), структурная классификация и структурный анализ (Ассур), метод планов скоростей и ускорений (Мор, Манке), правило проворачиваемости механизма (Грасгоф) и многие другие разделы ТММ.

4-й период от начала XX века до настоящего времени — период интенсивного развития всех направлений ТММ как в России, так и за рубежом. Среди русских ученых необходимо отметить обобщающие работы Артоболевского И.И., Левитского Н.И., Фролова К.В.; в области структуры механизмов — работы Малышева , Решетова Л.Н., Озола О.Г.; по кинематике механизмов — работы Колчина Н.И., Смирнова Л.П., Зиновьева В.А.; по геометрии зубчатых передач — работы Литвина Ф.Л., Кетова Х.Ф., Гавриленко В.А., Новикова М.Л.; по динамике машин и механизмов — Горячкин В.П., Кожевников С.Н., Коловский М.З. и др. Данное перечисление не охватывает и малой доли работ выдающихся ученых, внесших существенный вклад в развитие ТММ в этот период. Из зарубежных ученых необходимо отметить работы Альта Х., Бегельзака Г., Бейера Р., Крауса Р., Кросли Ф. и многих других.

В теоретической части сопротивление материалов базируется на математике и теоретической механике, в экспериментальной части — на физике и материаловедении и применяется при проектировании машин, приборов и конструкций. Практически все специальные дисциплины подготовки инженеров по разным специальностям содержат разделы курса сопротивления материалов, так как создание работоспособной новой техники невозможно без анализа и оценки ее прочности, жёсткости и надежности.

Задачей сопротивления материалов, как одного из разделов механики сплошной среды, является определение деформаций и напряжений в твёрдом упругом теле, которое подвергается силовому или тепловому воздействию.

Эта же задача среди других рассматривается в курсе теории упругости. Однако методы решения этой общей задачи в том и другом курсах существенно отличаются друг от друга. Сопротивление материалов решает её главным образом для бруса, базируясь на ряде гипотез геометрического или физического характера. Такой метод позволяет получить, хотя и не во всех случаях, вполне точные, но достаточно простые формулы для вычисления напряжений. Также поведением деформируемых твердых тел под нагрузкой занимается теория пластичности и теория вязкоупругости.

Расчет конструкций и их элементов является или теоретически невозможным, или практически неприемлемым по своей сложности. Поэтому в сопротивлении материалов существует модель идеализированного деформируемого тела.

Гипотеза сплошности и однородности — материал представляет собой однородную сплошную среду; свойства материала во всех точках тела одинаковы и не зависят от размеров тела.

Гипотеза об изотропности материала — физико-механические свойства материала одинаковы по всем направлениям.

Гипотеза об идеальной упругости материала — тело способно восстанавливать свою первоначальную форму и размеры после устранения причин, вызвавших его деформацию.

Гипотеза (допущение) о малости деформаций — деформации в точках тела считаются настолько малыми, что не оказывают существенного влияния на взаимное расположение нагрузок, приложенных к телу.

Допущение о справедливости закона Гука — перемещения точек конструкции в упругой стадии работы материала прямо пропорциональны силам, вызывающим эти перемещения.

Принцип независимости действия сил — принцип суперпозиции; результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения.

Гипотеза Бернулли о плоских сечениях — поперечные сечения, плоские и нормальные к оси стержня до приложения к нему нагрузки, остаются плоскими и нормальными к его оси после деформации.

Принцип Сен-Венана — в сечениях, достаточно удаленных от мест приложения нагрузки, деформация тела не зависит от конкретного способа нагружения и определяется только статическим эквивалентом нагрузки.

Из всех теорий прочности наиболее полной, точной и всеобъемлющей является теория Мора. Все её положения проверены экспериментально. Она одинаково подходит как для проверки прочности хрупких материалов (чугун, бетон, кирпич), так и для проверки на прочность пластичных материалов (низкоуглеродистая сталь). Теория наибольших нормальных напряжений и теория наибольших деформаций подходит лишь для прочностного анализа хрупких материалов, причём только для каких-то определённых условий нагружения, если требовать повышенную точность расчёта. Поэтому первые две теории прочности сегодня применять не рекомендуется. Результаты теории наибольших касательных напряжений и теории наибольшей удельной потенциальной энергии формоизменения можно получить в некоторых частных случаях нагружения при применении теории Мора.

Расчетный аппарат сопротивления материалов широко используется в статике сооружений и дисциплинах связанных с проектированием деталей машин, строительных конструкций, мостов и дорог.

Для обеспечения эффективности образовательного процесса по механике рекомендуется использовать:

  • разнообразные виды организации учебных занятий, в том числе с использованием компьютерных технологий;
  • различные виды учебной деятельности обучающихся, включая практическую, проектную и исследовательскую;
  • оптимальные средства и методы оценки качества образовательного процесса.

Список литературы

  1. Тарг С.М. Краткий курс теоретической механики. – М.: Высшая школа, 2001.
  2. Яблонский А.А., Никифорова В.М. Курс теоретической механики. – СПб.: Лань, 2002.
  3. Воронков И.М. Курс теоретической механики. – М.: Наука, 1966.
  4. Гернет М.М. Курс теоретической механики. – М.: Высшая школа, 1987.