Изучение процесса формирования береговой линии

№39-2,

Технические науки

В статье рассматривается простая модель, позволяющая качественно описывать процесс формирования береговой линии. Реализация модели выполнена в виде компьютерной программы в среде визуального программирования Delphi. Программа позволяет моделировать формирование береговой линии и прогнозировать эволюцию реальных островных территорий.

Похожие материалы

Береговая линия [1, 6] является одним из динамично развивающихся природных образований, она формируется под влиянием климатических факторов, гидродинамических условий моря, геолого-геоморфических условий побережья, техногенных факторов и т.д.

С целью изучения динамики береговой линии в настоящее время часто прибегают к использованию космических снимков, проводя дистанционное наблюдение в течение определенного периода времени. Так, в работе [1] проведена оценка изменения суммарной площади береговой зоны Балтийского моря на четырех тестовых участках за период с 1979 по 2010 г. (использовались топоосновы различных масштабов и данные со спутников Ландсат). Суммарная площадь потерь на тестовых участках ежегодно составила от 4 до 50 га в год при аккумуляции от 2 до 21 га в год.

Мы можем измерить длину береговой линии лишь приблизительно. В качестве измерительного прибора можно использовать, например, циркуль [3, 7]. Пройдя с ним вдоль береговой линии так, чтобы каждый новый шаг начинался в той точке, где закончился предыдущий, и умножив количество шагов на длину шага, получим приблизительную длину берега. По мере того как мы уменьшаем раствор циркуля, нам приходится измерять все больше маленьких мысов и бухт – длина береговой линии увеличивается, и объективного предела уменьшению масштаба (и, тем самым, увеличению длины береговой линии) просто не существует. Таким образом, можно сказать, что береговая линия имеет бесконечную длину, и имеет фрактальную природу [2-7].

В данной работе моделирование эволюции береговой линии проводится на основе итерационного подхода, а в качестве случайных входных воздействий и воздействий окружающей среды используются прочность и величина разрушения. Прочность может случайным образом задаваться для всех или некоторых точек островного участка до запуска процесса моделирования эволюции береговой линии, а величина разрушения позволяет задать уменьшение прочности прибрежной точки на каждом шаге моделирования. Итерации, уменьшающие прочность каждой отдельной точки береговой линии, будут продолжаться до ее полного разрушения, то есть до ее превращения в участок, имитирующий воду.

Принятая модель не предполагает увеличения размеров острова, отражает лишь весьма отдаленно реальные процессы формирования береговой линии, и потому может быть использована в основном для учебных целей. Тем не менее на ее основе могут быть созданы более точные модели.

При программной реализации принято, что минимум прочности будет соответствовать синему цвету в формате RGB (0,0,255), имитирующему воду. Черный цвет в таком формате (0,0,0) соответствует максимуму прочности. Таким образом, постепенное разрушение точки острова будет происходить при последовательном увеличении числа, соответствующего цвету пикселя, на некоторую величину. Однако не во всех итерациях может произойти размытие точки острова, этот исход имеет вероятностное значение. Когда прочность точки острова достигла нуля, то этот участок полностью размыт и его цвет становится синим, т.е. его занимает вода.

Результатом работы является компьютерная программа (рис. 1), моделирующая процесс эволюции береговой линии.

Окно программы

Рис. 1. Окно программы

Программа позволяет загружать карты отдельных островных территорий и в автоматическом режиме задавать условную прочность точкам острова на основе карты высот территории.

Рассмотрим для примера эволюцию береговой линии острова Тасмания, площадь которого 68401 км². Длина береговой линии Тасмании составляет более 3000 км.

Береговая линия острова подвергается воздействию со стороны омывающих его вод. Поэтому можно воспользоваться возможностью загружать контурные карты и провести моделирование эволюции острова Тасмания, подобрав соответствующие начальные условия. При подготовке модели постараемся учесть реальную прочностную структуру Тасмании. Условимся считать, что диапазон прочности, который может иметь рассматриваемая точка, зависит от ее высоты над уровнем моря (это, конечно, неверно, но так мы поступим лишь для демонстрации работы программы). Тогда воспользуемся топографической картой Тасмании (рис. 2), и программа автоматически подсчитает прочности точек острова (рис. 3).

Тасмания

Рис. 2. Тасмания

Карта прочности Австралии, построенная программой

Рис. 3. Карта прочности Тасмании, построенная программой

Площадь острова в модели 83222 пикселей, а длина его береговой линии – 3622. Размытие любых берегов, омываемых водой, в том числе и берегов Тасмании, происходит длительный период времени. Условимся считать одну итерацию равной 1 900 календарных лет. Здесь мы приняли для уменьшения площади континента значение 0,06 км2 в год. Очевидно, что время, приходящееся на одну итерацию, будет зависеть от размеров исходного изображения. Для установления более точного соответствия требуется комплексное изучение максимально возможного числа значимых параметров рассматриваемой системы, с привлечением исследовательского аппарата различных дисциплин и научных направлений, в том числе спутниковых технологий, что выходит за рамки работы.

Результаты работы программы после 444 итераций приведены на рис. 4. Площадь острова в модели при этом стала равна 70273 пикселей, а длина его береговой линии – 2897. В рамках принятых предположений это будет соответствовать около 844 тыс. лет, а площадь континента уменьшится соответственно на 15,6%.

Береговая линия Тасмании через 844 тыс. лет

Рис. 4. Береговая линия Тасмании через 844 тыс. лет

Очевидно, что лучше при оценках протяженности береговой линии с течением времени использовать изображения с большим количеством точек, т.к. в этом случае одной итерации будет соответствовать меньший интервал времени. При этом это существенно будет влиять на скорость производимых вычислений.

Полученные в ходе работы результаты могут приближенно отражать процессы формирования береговых линий островных территорий, их можно использовать, например, в учебных целях. Также стоит отметить, что так как программа позволяет работать с картами высот, то она может быть использована для моделирования процесса затопления территорий в случае повышения уровня океана.

Список литературы

  1. Брыксина Н.А. Изучение динамики береговой зоны Балтийского моря с использованием космических снимков // Вестник Балтийского федерального университета им. И. Канта. 2014. № 1. – С. 50-59.
  2. Дмитриев В.Л., Мухаметова А.К. Популярно о фракталах: Исторический экскурс // NovaInfo. 2015. № 38. [Электронный ресурс]. – Режим доступа: http://novainfo.ru/archive/38/populyarno-o-fraktalakh-istoricheskiy-ekskurs (дата обращения: 17.11.2015).
  3. Дмитриев В.Л., Мухаметова А.К. Популярно о фракталах: новая дробная размерность // NovaInfo. 2015. № 38. [Электронный ресурс]. – Режим доступа: http://novainfo.ru/archive/38/populyarno-o-fraktalakh-novaya-drobnaya-razmernost (дата обращения: 18.11.2015).
  4. Дмитриев В.Л., Мухаметова А.К. Популярно о фракталах: многообразие фракталов и их классификация // NovaInfo. 2015. № 38. [Электронный ре-сурс]. – Режим доступа: http://novainfo.ru/archive/38/mnogoobrazie-fraktalov-i-ikh-klassifikatsiya (дата обращения: 20.11.2015).
  5. Дмитриев В.Л., Мухаметова А.К. Популярно о фракталах: применение фракталов и обзор программ // NovaInfo. 2015. № 38. [Электронный ресурс]. – Режим доступа: http://novainfo.ru/archive/38/primenenie-fraktalov-i-obzor-programm (дата обращения: 23.11.2015).
  6. Мандельброт Б. Фрактальная геометрия природы. – М.: Институт компьютерных исследований, 2002. – 656 с.
  7. Feder J. Fractals. – New York: Plenum Press. 1988. – 312 p.