Роль математики в современном мире

NovaInfo 46, с.11-16, скачать PDF
Опубликовано
Раздел: Физико-математические науки
Язык: Русский
Просмотров за месяц: 2
CC BY-NC

Аннотация

Целью изучения математики является – повышение общего кругозора, культуры мышления, формирование научного мировоззрения.

Ключевые слова

МАТЕМАТИКА, ПЕРИОДЫ РАЗВИТИЯ, МАТЕМАТИЧЕСКИЕ СТРУКТУРЫ, СОВРЕМЕННАЯ МАТЕМАТИКА

Текст научной работы

Целью изучения математики является – повышение общего кругозора, культуры мышления, формирование научного мировоззрения.

Математика – наука о количественных отношениях и пространственных формах действительного мира. Академик Колмогоров А.Н. выделяет четыре периода развития математики: зарождение математики, элементарная математика, математика переменных величин, современная математика.

Начало периода элементарной математики относят к VI-V веку до нашей эры. Понимание математики, как самостоятельной науки возникло впервые в Древней Греции. В течение этого периода развивается арифметика – наука о числе.

В период развития элементарной математики появляется теория чисел, выросшая постепенно из арифметики. Создается алгебра, как буквенное исчисление.

В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур.

С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенная Ньютоном и Лейбницем понятие «бесконечно малой величины», создание основ анализа бесконечно малых (математического анализа).

На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.

К этому времени относятся и появление гениальной идеи Р. Декарта – метода координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.

Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения.

Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории. Новые теории возникают не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является «воображаемая геометрия» Н. И. Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.

Математика (греч. mathematike, от mathema - знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.

Современное понятие математики - наука о математических структурах (множествах, между элементами которых определены некоторые отношения).

Современная математика имеет следующие основные разделы:

  1. Элементарная математика: алгебра, геометрия и тригонометрия (на плоскости и сфере).
  2. Аналитическая геометрия (на плоскости и в пространстве).
  3. Функции и пределы. Дифференциальное и интегральное исчисление.
  4. Векторный анализ. Системы криволинейных координат.
  5. Функции комплексного переменного.
  6. Преобразование Лапласа и другие интегральные преобразования.
  7. Дифференциальные уравнения.
  8. Максимумы и минимумы.
  9. Математические модели. Абстрактная алгебра и абстрактные пространства.
  10. Матрицы. Квадратичные и эрмитовы формы.
  11. Линейные векторные пространства и линейные операторы. Матричное представление линейных преобразований.
  12. Интегральные уравнения, краевые задачи и задачи о собственных значениях.
  13. Тензорная алгебра и тензорный анализ.
  14. Дифференциальная геометрия.
  15. Теория вероятностей.
  16. Теория случайных процессов.
  17. Математическая статистика.
  18. Численные методы и конечные разности.

Математики отличаются от "нематематиков" тем что, обсуждая научные проблемы или решая практические задачи, говорят между собой и пишут работы на особом "математическом языке" - языке специальных символов, формул. На математическом языке многие утверждения выглядят яснее и прозрачнее, чем на обычном.

Например, на обычном языке говорят: "От перемены мест слагаемых сумма не меняется" - так звучит переместительный закон сложения чисел.

Математик пишет (или говорит): a + b = b + a

А выражение: "Путь S, пройденный телом со скоростью V за период времени от начала движения tн до конечного момента tк "

запишут так: S = V · (tк - tн)

Или такую фразу из физики: "Сила равна произведению массы на ускорение"

запишут: F = m · a

Он переводит высказанное утверждение на математический язык, в котором используются разные числа, буквы (переменные), знаки арифметических действий и иные символы. Все эти записи экономны, наглядны и удобны для применения.

Во всяком языке есть своя письменная и устная речь. Выше мы говорили о письменной речи в математике. Устная речь - это употребление специальных терминов или словосочетаний, например: "слагаемое", "произведение", "уравнение", "неравенство", "функция", "график функции", "координата точки", "система координат" и т.п., а также различные математические утверждения, выраженные словами: "Число а делится на 2 тогда и только тогда, когда оканчивается на 0 или четную цифру".

Рассмотрим математические структуры.

Алгебраические структуры. Примерами таких структур являются группы, кольца и поля. Основные характеристики алгебраической структуры: задание на некотором множестве А конечного числа операций с соответствующими свойствами, описываемых системой аксиом. В качестве элементов множества А могут выступать как математические объекты (числа, матрицы, перемещения, векторы), так и нематематические.

Структуры порядка характеризуются тем, что на рассматриваемом множестве задается отношение порядка (сравнение на числовых множествах), для которого выполняются следующие свойства: рефлексивность, симметричность, транзитивность.

Топологические структуры. Множество М обладает топологической структурой, если каждому его элементу тем или иным способом отнесено семейство подмножеств из М, называемых окрестностями этого элемента, причем эти окрестности должны удовлетворять определенным аксиомам (аксиомам топологических структур). С помощью топологических структур точно определяются такие понятия, как «окрестность», «предел», «непрерывность».

В математике изучаются математические модели объектов. Одна и та же математическая модель может описывать свойства далеких друг от друга реальных явлений. Так, одно и тоже дифференциальное уравнение может описывать процессы роста населения и распад радиоактивного вещества. Для математика важна не природа рассматриваемых объектов, а существующие между ними отношения. В математике используют два вида умозаключений: дедукция и индукция.

Индукция – метод исследования, в котором общий вывод строится не основе частных посылок. Дедукция – способ рассуждения, посредством которого от общих посылок следует заключение частного характера.

Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.

Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

Читайте также

Список литературы

  1. Лубова, Т. Н. Многомерные статистические методы [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БГАУ, 2015. - 64 с.
  2. Лубова, Т. Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БашГАУ, 2015. - 163 с.
  3. Исламгулов, Д.Р. Применение корреляционного анализа в агрономии [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Уральский научный вестник. – 2016. – Т. 4. - № 3. – С. 142-147.
  4. Лубова, Т.Н. Принципы статистического прогнозирования при разработке инновационной стратегии региона [Текст] / Т.Н. Лубова // Экономика, экология и общество России в 21-м столетии: Сборник научных трудов: 11-й Международной научно-практической конференции, 19-21 мая 2009 г. / Санкт-Петербургский государственный политехнический университет. – С.-Петербург, 2009. – С. 155-156.
  5. Лубова, Т. Н. Многомерная классификация регионов Приволжского федерального округа по уровню финансовой безопасности [Текст] / Т. Н. Лубова // Конкурентоспособность региона в условиях экологических и демографических ограничений: Материалы межрегиональной научно-практической конференции. – Улан-Уде: Изд-во БНЦ СО РАН, 2009. – с. 149-159.
  6. Лубова, Т. Н. Классификация регионов Российской Федерации методом кластерного анализа [Текст] / Т. Н. Лубова // Образование, наука, практика: инновационный аспект: Сб. материалов международной научно-практической конференции, посвященной памяти профессора А.Ф. Блинохватова. – Пенза: РИО ПГСХА, 2008. – С.379-381.
  7. Исламгулов, Д. Р. Компетенция - основа реализации цели ФГОС [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 133-137.
  8. Лубова, Т. Н. Оценка качества образования в рамках компетентностного подхода [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 189-192.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  10. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 62-69.
  11. Исламгулов, Д.Р. Модульно-рейтинговая система обучения и оценки знаний – особенности внедрения [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 70-78.
  12. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 79-84.
  13. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 85-93.
  14. Лубова, Т.Н. Использование тестирования в организации самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 12. – С. 44-48.

Цитировать

Шайхтдинова, Г.А. Роль математики в современном мире / Г.А. Шайхтдинова. — Текст : электронный // NovaInfo, 2016. — № 46. — С. 11-16. — URL: https://novainfo.ru/article/6136 (дата обращения: 29.03.2023).

Поделиться