Методы диагностирования топливной аппаратуры дизелей

NovaInfo 47, с.40-45, скачать PDF
Опубликовано
Раздел: Технические науки
Просмотров за месяц: 97
CC BY-NC

Аннотация

Проведен анализ методов диагностирования топливной аппаратуры, определены основные недостатки существующих методов диагностирования топливной аппаратуры.

Ключевые слова

ОБОРУДОВАНИЕ, ТОПЛИВНАЯ АППАРАТУРА, МЕТОДЫ ДИАГНОСТИРОВАНИЯ, ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ

Текст научной работы

В процессе эксплуатации дизеля большое число нарушений рабочего процесса двигателя связано с неисправностями топливной аппаратуры, на долю которого приходится 25-50% всех неисправностей. Однозначное распознавание неисправности топливной аппаратуры даже при нормальной работоспособности других систем дизеля невозможно. При этом следует учитывать и то, что плотная компоновка моторного отсека (особенно дизелей иностранного производства) и сложность топливной системы являются основными причинами высокой трудоемкости демонтажа узлов топливной аппаратуры. Поэтому принимать решение о необходимости снятия топливного насоса высокого давления (ТНВД) и форсунок с дизеля для ремонта нужно весьма осторожно и только по результатам их диагностирования.

Известно, что одни и те же внешние признаки нарушения рабочего процесса дизеля могут быть вызваны неисправностями топливоподачи как низкого, так и высокого давления, а также отсутствием компрессии в цилиндрах двигателя. Кроме того, неисправности топливоподачи низкого давления являются причиной нарушения работоспособности элементов системы топливоподачи высокого давления. При этом аналогичное воздействие наблюдается и внутри системы топливоподачи высокого давления.

Во избежание ошибок при диагностировании предлагаем порядок поиска неисправностей, связанных с нарушением нормального рабочего процесса дизельного двигателя:

Диагностирование топливоподачи низкого давления в последовательности: контроль наличия воздуха в системе → проверка топливоподкачивающего насоса → фильтра тонкой очистки топлива → перепускного клапана.

Диагностирование топливоподачи высокого давления в последовательности: ТНВД → форсунки.

Одним из методов диагностирования топливной аппаратуры является оценка по параметрам отработавших газов. Однако параметры отработавших газов являются функцией как топливной аппаратуры, так и технического состояния агрегатов наддува, цилиндропоршневой группы и других. В связи с этим только по параметрам отработавших газов трудно оценить состояние топливной аппаратуры.

Регулировку топливной аппаратуры дизелей во многих случаях контролируют по максимальному давлению сгорания, температуре отработавших газов за каждым цилиндром и выходу рейки топливного насоса высокого давления. По этим же параметрам осуществляют и оценку ее технического состояния. Однако повышение температуры отработавших газов по мере эксплуатации дизеля неизбежно вследствие ухудшения технического состояния других узлов и агрегатов, в том числе цилиндропоршневой группы, газораспределительного механизма, системы воздухоснабжения.

Происходящее в процессе эксплуатации дизеля ухудшения технического состояния приводит к тому, что определенные на каком-либо фиксированном режиме, параметры и показатели двигателя имеют отличные от исходных значении. Общее снижение индикаторного КПД определяется как изменением состояния внешних по отношению к цилиндру систем, приводящих к отклонению параметров, так и ухудшением состояния топливной аппаратуры в целом.

Изменение индикаторного КПД дизеля в зависимости от состава смеси и наработки: 1- дизель в исходном состоянии; — 2-й цилиндр; -3-й цилиндр; — после 1200 ч. работы; — после 200 ч. работы.
Рисунок 1. Изменение индикаторного КПД дизеля в зависимости от состава смеси и наработки: дизель в исходном состоянии; 2-й цилиндр; 3-й цилиндр; после 1200 ч. работы; после 200 ч. работы

На рисунке представлены закономерности изменения индикаторного КПД во втором и третьем цилиндрах дизеля 8ЧН 26/26 с учетом наработки. Через 200 ч после начала испытаний индикаторный КПД третьего цилиндра несущественно отличался от исходного значения (сплошная кривая). После 1200 ч работы это отличие составляло всего лишь 0,005. При значительном общем снижении индикаторного КПД равного 0,038 на долю топливной аппаратуры приходится очень незначительная часть (13%) этого изменения. Таким образом, ухудшение экономичности вызвано не топливной аппаратурой, а другими элементами конструкции двигателя.

Для второго цилиндра характерно значительное ухудшение экономичности через 1200 ч работы (разность индикаторного КПД равна 0,051) при сравнительно малом изменении состава смеси. Как видно из рис. основная доля снижения индикаторного КПД приходится на топливную аппаратуру второго цилиндра (примерно 80%), а остальная часть, обусловлена изменением режимных параметров вследствие изменения состояния других агрегатов дизеля.

Приведенная методика и результаты ее опытной проверки позволяет заключить о возможности оценки состояния топливной аппаратуры предлагаемым способом. Предлагаемый способ имеет недостатки. Для осуществления такой оценки состояния топливной аппаратуры конкретных цилиндров необходимо знать величины: температуру газов и состав смеси для каждого из них. Оценить состав газов в i-м цилиндре сложно, особенно для дизелей с импульсной системой наддува при наличии продувки. Неизбежность применения автоматических устройств при этом усложняет систему диагностирования.

Важным параметром, характеризующим работу системы топливоподачи, является продолжительность и опережение подачи топлива. В процессе эксплуатации угол опережения впрыска топливаизменяется вследствие износа прецизионных деталей насоса высокого давления. При эксплуатации автомобильных дизелей рекомендуется определять угол опережения подачи топлива по моментоскопу. Этот метод определения угла опережения подачи топлива дает удовлетворительные результаты только при новойплунжерной паре и новом нагнетательном клапане.

Известны методы диагностирования топливных насосов высокого давления, которые реализуют, разработанный для определения углов опережения подачи и продолжительности впрыска, использование которых связано с минимальным вмешательством в работу топливной аппаратуры. Общий их принцип в том, что датчик монтируют в трубопровод высокого давления, либо устанавливается в ответвление трубопровода форсунки.

Отрицательные стороны этих методов определения угла начала впрыска заключается в необходимости доступа к маховику или какому-нибудь шкиву двигателя, имеющему угловые метки, по которым стробоскопом делают замеры. Перспективу устранения этого неудобства видят в установке на двигатель импульсного датчика, соответствующего верхней мертвой точке

Еще один метод диагностирования топливной аппаратуры прибор для проверки дизельных форсунок ДД-2110.Прибор позволяет провести диагностику практически всех типов дизельных форсунок и проводить измерения: давление начала впрыска и качество распыления топлива, герметичность запорного конуса (по появлению капли топлива на носике распылителя), гидроплотность по запорному конусу и направляющей цилиндрической части.

Виброакустический метод дает наиболее достоверные и исчерпывающие результаты диагностирования при использовании комплекта виброакустической аппаратуры. Универсальность виброакустических методов диагностирования позволяет использовать разработанные алгоритмы в различных отраслях техники. Недостаток данного метода заключается в том, что из-за большой стоимости и сложности, требующей высокой квалификации операторов-диагностов, ее применение возможно не на всех предприятиях автомобильного транспорта.

Спектрографический метод диагностирования предусматривает анализ проб масла и иных жидкостей из полостей механизмов машины с целью выявления интенсивности изнашивания деталей, работающих в соответствующей среде.

Средствами электрографии можно установить темп износа движущихся и сопряженных с ними деталей, трансмиссии и ходовой части машин. Для специального анализа масел применяется установка КИ-13955.

Диагностирование с помощью встроенных контрольно-измерительных приборов (функциональное диагностирование) осуществляется в процессе использования машин по назначению. По указателям температуры судят о состоянии системы охлаждения и режимах загрузки машины; по указателям и сигнализаторам давления — об исправности системы смазки; с помощью тахометров и спидометров контролируют скоростные режимы и степень загрязненности воздушного фильтра и т.д.

Недостаток метода является необходимость частичной или полной разборки увеличивающей интенсивность изнашивания, нарушение приработки, большая трудоемкость.

Магнитоэлектрический метод диагностирования основан на регистрации изменяющегося магнитного потока в датчике диагностического прибора, взаимодействующего с вращающимися деталями механизмов машины. Метод позволяет регистрировать перемещения, фазовые параметры (момент впрыска, начала подачи топлива, фазы газораспределения) и определять отношение этих параметров от номинальных значений.

Недостаток метода является большая трудоемкость, невозможность комплексного контроля сложных систем, увеличивающей интенсивность изнашивания.

Газоаналитический метод заключается в определении скорости потока воздуха, его температуры, давления, а так же химического состава выхлопных газов. Имея эталонные данные, можно определить техническое состояние дизельных и карбюраторных двигателей и т.д.

Более глубокая проработка данных методов с учетом требований, предъявляемых к ним на основе проведенных выше анализов, позволит получать более полную и точную информацию о работоспособности ТА, её функционировании и техническом состоянии с учетом всех элементов системы. Поэтому необходимо повышать эффективность использования современных бесконтактных и неразборных методов диагностирования, основанных на анализе выходных параметров, функционально связанных со структурными параметрами.

Читайте также

Список литературы

  1. Ильин, В.А. Влияние технического состояние элементов низкого давления на показатели работы топливных насосов типа VE [Текст]/ В.А. Ильин, А.А. Козеев // Труды ГОСНИТИ. -2009. -Т. 103. № 1. -С. 60-63.
  2. Габитов, И.И. Топливная аппаратура автотракторных дизелей [Текст] : учеб. пособие для студ. вузов, обуч. по спец. 311300 – «Механизация сельского хозяйства» и 311900 – «Технология обслуживания и ремонта машин в АПК» / И. И. Габитов, А. В. Неговора ; МСХ РФ. –Уфа : Изд-во БГАУ, 2004. –216 с.
  3. Габитов, И.И. Особенности технического сервиса импортных мобильных сельхозмашин [Текст] / И.И. Габитов, В.И. Портнов // Тракторы и сельхозмашины. –2007. –№ 1. –С. 52.
  4. Габитов, И.И. Устройство для исследования подачи топлива топливоподающей аппаратурой в дизелях [Текст] / И.И. Габитов, А.В. Неговора, А.Г. Габбасов, А.Р. Валиев, А.Ф. Давлетов / патент на изобретение RUS 2433299 24.03.2010.
  5. Грехов, Л.В. Аккумуляторная топливная система с электрогидроуправляемой форсункой [Текст] / Л.В. Грехов, И.И. Габитов, А.В. Неговора // Тракторы и сельхозмашины. –2001. –№ 7. –С. 14-16
  6. Габитов, И.И. Анализ неисправностей электрогидравлических форсунок типа common rail [Текст] / И.И. Габитов, А.Р. Валиев, Р.А. Вахитов // Тракторы и сельхозмашины. –2011. –№ 11. –С. 41-43.
  7. Неговора, А.В. Совершенствование способов диагностирования топливоподающих систем дизелей с электронным управлением [Текст]/ А.В. Неговора, У.А. Махиянов, А.Ф. Ахметов // Известия Международной академии аграрного образования. - 2012. Т. 1. -№14. -С. 260-265.
  8. Габитов, И.И. Разработка системы машин для реализации инновационных технологий в растениеводстве Республики Башкортостан [Текст] / И.И. Габитов, С.Г.Мударисов, Р.Р.Исмагилов, И.Г.Асылбаев, И.Д. Гафуров, А.М.Аблеева. //Достижения науки и техники АПК. -2014.- № 5. -С. 57-62.
  9. Габитов, И. И. Обеспечение надежности топливной аппаратуры дизелей сельскохозяйственного назначения в процессе ее эксплуатации [Текст] / И.И. Габитов. - СПб. : Изд-во СПб. ГАУ, 2000. - 353 с.

Цитировать

Магафуров, Р.Ж. Методы диагностирования топливной аппаратуры дизелей / Р.Ж. Магафуров. — Текст : электронный // NovaInfo, 2016. — № 47. — С. 40-45. — URL: https://novainfo.ru/article/6752 (дата обращения: 28.06.2022).

Поделиться