Жизнь и научная деятельность Т. Байеса

NovaInfo 47, с.10-14
Опубликовано
Раздел: Физико-математические науки
Просмотров за месяц: 0
CC BY-NC

Аннотация

Статья о жизни и научной деятельности английского математика и религиозного деятеля Т. Байеса.

Ключевые слова

ТЕОРЕМА, СВЯЩЕННИК, УЧЕНЫЙ, НАУЧНАЯ РАБОТА, МАТЕМАТИК, СТАТЬЯ, АКАДЕМИЯ

Текст научной работы

К сожалению, история знает немало примеров того, как труды учёных предавались забвению и не были оценены по достоинству лишь из-за того, что им не было найдено практического применения в условиях тех дней. Подобная участь постигла и Тома Байеса: английского математика и религиозного деятеля. Признание к нему пришло лишь с началом эры компьютерных технологий. В 2002 году мир разработчиков программного обеспечения отмечал 300 лет со дня рождения этого выдающегося учёного.

Томас Байес родился в 1702 году в Лондоне, в семье одного из первых шести пресвитерианских священников в Англии, был представителем известного нонконформистского рода из Шеффилда. Томас обучался дома и в 1719 году поступил в Эдинбургский университет изучать логику и богословие. По возвращению домой в 1722 году, Байес помогал отцу в часовне проводить службу, а вскоре, в 30-х годах, сам стал священником в пресвитерианской церкви. В 1734 году переехал в Танбридж Уэллс, графство Кент. Среди современных ему английских ученых Байес был человеком довольно известным и в 1742 году был избран "в академики", т.е. в члены лондонского Королевского общества, даже, несмотря на тот факт, что священником не было опубликовано ни одной работы по математике. Более того, при жизни Байеса, строго говоря, под его именем не вышло вообще ни одной научной работы. Помимо же этого, в 1736 году Байесом анонимно была опубликована статья "Введение в теорию флюксий или В защиту математиков от нападок автора The Analyst (Комментатора)". Здесь Байес защищал ньютоновскую теорию дифференциального исчисления от атаки Джорджа Беркли, пытавшегося с метафизических позиций раскритиковать "неправильные", на его взгляд, логические основания мощнейшей математической теории. Что же касается фундаментального исследования Байеса в области теории вероятностей, то оно было изложено им в "Эссе о решении проблем в теории случайных событий". Эту работу математика лишь после его смерти обнаружил друг Ричард Прайс, который и переслал статью в академию. В 1764 году это "Эссе" было опубликовано в "Трудах Лондонского Королевского общества". Формулировка, математическая запись теоремы Байеса, её следствие. Теорема Байеса одна из основных теорем элементарной теории вероятностей, которая определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. По формуле Байеса можно более точно пересчитывать вероятность, принимая во внимание как ранее известную информацию (априорные данные), так и данные новых наблюдений (апостериорные данные).

P(A|B)=\frac{P(B|A)P(A)}{P(B)}

где P(A) априорная вероятность гипотезы A; P(A|B) вероятность гипотезы A при наступлении события B (апостериорная вероятность); P(B|A) вероятность наступления события B при истинности гипотезы A; P(B) вероятность наступления события B.

Важным следствием формулы Байеса является формула полной вероятности события, зависящего от нескольких несовместных гипотез (и только от них!):

P(B)=\sum_{i=1}^{N}P(A_i)P(B|A_i)

С помощью следствия можно определить вероятность наступления события B, зависящего от ряда гипотез Ai, если известны степени достоверности этих гипотез; в первом приближении байесовские идеи близки обыденному сознанию. В каждодневной жизни мы тем или иным способом, никак не формулируя ее, набираем статистику, позволяющую делать суждение о вероятности ожидающих нас событий. Это называют жизненным или профессиональным опытом. В приближении к приведенной формуле теорему Байеса часто иллюстрируют таким примером. Некий повар фаст-фуда принимает заказы в условиях шума, а потому воспринимает их с искажениями. Если заказ сделан на блюдо A, то может принять его за блюдо B. У посетителей блюда пользуются разным спросом, P(A) вероятность заказа блюда A, вероятность ошибки B для данного A равна P(B/A), а вероятность услышать верный заказ равна P(A/B). Вероятности P (B) и P(B/A) являются знанием условий. Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной. События, отражающие действие «причин», в данном случае обычно называют гипотезами, так как они предполагаемые события, повлекшие данное. Безусловную вероятность справедливости гипотезы называют априорной (насколько вероятна причина вообще), а условную с учетом факта произошедшего события апостериорной (насколько вероятна причина оказалась с учетом данных о событии). На протяжении десятилетий обсуждение аргументов за и против было уделом математиком и философов, оно не выходило за пределы академической среды; действительным же поворотным пунктом в истории математического наследия Томаса Байеса стали сравнительные исследования по оценке результативности медицинских препаратов, проведенные в 60- е и 70-е годы компанией с использованием байесовской и небайесовской статистики. Последующие исследования показали, что байесовские подходы с равным успехом могут быть применены в истории, археологии, но, возможно, наилучшие перспективы у машинного обучения. Можно говорить о полной реабилитации взглядов Байеса: теперь он в некотором смысле стал культовой фигурой; его могила восстановлена и стала своеобразным местом поклонения.

Главная особенность теоремы Байеса в том, что для ее практического применения обычно требуется огромное количество вычислений-пересчетов, а потому расцвет методов байесовых оценок пришелся аккурат на революцию в компьютерных и сетевых инфотехнологиях. Программное обеспечение Autonomy, построенное на базе байесовых оценок, позволяет компьютерам "понимать" содержание неструктурированной информации, такой как текстовые участки веб-страниц или электронная почта. Например, с помощью байесовского аппарата по контексту достаточно элементарно подбирается нужная информация о реке Амазонке, а не о мифических племенах воинственных женщин или об онлайновом супермагазине с тем же названием Amazon. Просто по той причине, что контекст документа будет включать упоминания о джунглях, деревьях и Южной Америке. В компании Microsoft этот же статистический аппарат заложен в программы выявления неполадок в ОС WinXP, а еще ранее — был использован при создании MS Office для создания функции предложения пользователю своевременных подсказок.

Наука не имеет временных границ. То, что ещё вчера было лишь несколькими листочками исписанной бумаги, сегодня может стать основой для функционирования целой сферы деятельности человеческого общества. Томас Байес не предугадывал наступления эры компьютерных технологий. Математика была его хобби. Он никогда не публиковал своих научных работ. Но прогресс не стоит на месте, и вот уже имя английского священника на слуху во всех уголках мира. Наука не может быть бесполезной. И пример Сэра Томаса Байеса — яркое тому подтверждение.

Читайте также

Список литературы

  1. Лубова, Т. Н. Многомерные статистические методы [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БГАУ, 2015. - 64 с.
  2. Лубова, Т. Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БашГАУ, 2015. - 163 с.
  3. Исламгулов, Д.Р. Применение корреляционного анализа в агрономии [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Уральский научный вестник. – 2016. – Т. 4. - № 3. – С. 142-147.
  4. Лубова, Т.Н. Принципы статистического прогнозирования при разработке инновационной стратегии региона [Текст] / Т.Н. Лубова // Экономика, экология и общество России в 21-м столетии: Сборник научных трудов: 11-й Международной научно-практической конференции, 19-21 мая 2009 г. / Санкт-Петербургский государственный политехнический университет. – С.-Петербург, 2009. – С. 155-156.
  5. Лубова, Т. Н. Многомерная классификация регионов Приволжского федерального округа по уровню финансовой безопасности [Текст] / Т. Н. Лубова // Конкурентоспособность региона в условиях экологических и демографических ограничений: Материалы межрегиональной научно-практической конференции. – Улан-Уде: Изд-во БНЦ СО РАН, 2009. – с. 149-159.
  6. Лубова, Т. Н. Классификация регионов Российской Федерации методом кластерного анализа [Текст] / Т. Н. Лубова // Образование, наука, практика: инновационный аспект: Сб. материалов международной научно-практической конференции, посвященной памяти профессора А.Ф. Блинохватова. – Пенза: РИО ПГСХА, 2008. – С.379-381.
  7. Исламгулов, Д. Р. Особенности новых образовательных стандартов [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Современное вузовское образование : теория, методология, практика : материалы Междунар. учеб.-метод. конф., 21-22 марта 2013 г. / Башкирский ГАУ. - Уфа, 2013. - С. 14-15.
  8. Лубова, Т. Н. Особенности, задачи и проблемы внедрения модульно-рейтинговой системы [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Современное вузовское образование: теория, методология, практика: материалы Междунар. учеб.-метод. конф., 21-22 марта 2013 г. / Башкирский ГАУ. - Уфа, 2013. - С. 10-13.
  9. Лубова, Т.Н. Использование тестирования в организации самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // DNI VEDY-2016: materialy XII mezinarodni vedecko – prakticka Konference, 22-30 brezen 2016 roku. – Praha: Publishing House «Education and Science» s.r.o, 2016. – dil 10 Pedagogika. – С. 42-45.

Цитировать

Минниахметова, Э.З. Жизнь и научная деятельность Т. Байеса / Э.З. Минниахметова. — Текст : электронный // NovaInfo, 2016. — № 47. — С. 10-14. — URL: https://novainfo.ru/article/6498 (дата обращения: 19.01.2022).

Поделиться